个人资料
- 部门: 太阳集团tyc9728
- 性别: 女
- 专业技术职务: 教授、博士生导师
- 毕业院校: 英国曼彻斯特大学
- 学位: 博士
- 学历: 博士
- 联系电话:
- 电子邮箱: cjguo@dase.ecnu.edu.cn
- 办公地址: 数学馆东112室
- 通讯地址:
- 邮编:
- 传真:
个人简介
郭晨娟,太阳成集团,太阳集团tyc9728,教授,博士生导师。2021年入选国家级青年人才计划。英国曼彻斯特大学博士,曾任职丹麦奥尔堡大学,工程技术学院, 计算机系终身副教授。主要研究领域是数据管理和数据分析,涉及在智能交通,数字能源,和智能水资源管理等上的应用。已在主流知名国际会议和国际期刊上发表了多篇论文,包括SIGMOD,VLDB,ICDE,IJCAI,KDD,WWW,VLDB Journal, TKDE等。并担任担任IEEE TKDE、IEEE TMC等多个顶级期刊的专家审稿人,以及IJCAI、AAAI、ICDE、KDD、PVLDB等若干国际顶级会议的程序委员。
研究方向
数据管理与分析(Data Management and Analytics),机器学习(Machine Learning) 时间序列分析(Time Series Analytics),时空序列分析(Spatio-Temporal Data Analytics) 自动机器学习(AutoML),模型压缩(Model Compression),AI4DB
决策智能实验室主页: https://decisionintelligence.github.io/
欢迎本科生、研究生、博士生、博士后加入实验室!
开授课程
- 计算机科学拔尖班数据结构:2023、2024、2025年春季学期
科研项目
- 可解释的自动时间序列异常点预测,国家自然科学基金,2024-2027 - 时间序列分析基础模型,华为校企合作项目,2023-2025 - 多源异构数据的异常检测和根因分析,阿里巴巴校企合作项目,2023-2024 - Time Series Analytics, 华为校企合作项目,2023-2024 - 基于负载预测的云计算资源调度优化算法,阿里巴巴,2022-2023 - 时空数据管理与分析,国家自然科学基金,2022-2025 - Explainable AI for Complex Microbial Community Interactions and Predictions, funded by Villum Fonden, Denmark in collaboration with Prof. Per Halkjær Nielsen, funded by Villum Fonden, 2021 - 2024. - Light-AI for Cognitive Power Electronics, funded by Villum Fonden, Denmark, 2020-2023. - Time Series Analytics and Spatio-temporal Data Management, funded by Huawei, 2020 - 2022. - Advance: A Data-Intensive Paradigm for Dynamic, Uncertain Networks, funded by Independent Research Fund Denmark, 2019 - 2023. - Astra: AnalyticS of Time seRies in spAtial networks, funded by Independent Research Fund Denmark, 2018 - 2021. - Collaboration with BlipTrack, funded by Forskerpuljen, 2018.
学术成果
Full list: DBLP, Google Scholar.
Selected Papers: - Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoying Zhou, Christian S. Jensen, Zhenli Sheng, Bin Yang: TFB: Towards Comprehensive and Fair Benchmarking of Time Series Forecasting Methods. Proc. VLDB Endow. 17(9): 2363-2377 (2024) CCF-A - David Campos, Bin Yang, Tung Kieu, Miao Zhang, Chenjuan Guo, Christian S. Jensen: QCore: Data-Efficient, On-Device Continual Calibration for Quantized Models. Proc. VLDB Endow. 17(11): 2708-2721 (2024) CCF-A - Chenjuan Guo, Ronghui Xu, Bin Yang, Yuan Ye, Tung Kieu, Yan Zhao, Christian S. Jensen: Efficient Stochastic Routing in Path-Centric Uncertain Road Networks. Proc. VLDB Endow. 17(11): 2893-2905 (2024) CCF-A - Xinle Wu, Xingjian Wu, Bin Yang, Lekui Zhou, Chenjuan Guo, Xiangfei Qiu, Jilin Hu, Zhenli Sheng, Christian S. Jensen: AutoCTS++: zero-shot joint neural architecture and hyperparameter search for correlated time series forecasting. VLDB J. 33(5): 1743-1770 (2024) CCF-A - Hao Miao, Yan Zhao, Chenjuan Guo, Bin Yang, Kai Zheng, Feiteng Huang, Jiandong Xie, Christian S. Jensen: A Unified Replay-Based Continuous Learning Framework for Spatio-Temporal Prediction on Streaming Data. ICDE 2024: 1050-1062 CCF-A - Christian S. Jensen, Bin Yang, Chenjuan Guo, Jilin Hu, Kristian Torp: Routing with Massive Trajectory Data. ICDE 2024: 5542-5547 CCF-A - Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang, Chenjuan Guo: Pathformer: Multi-scale Transformers with Adaptive Pathways for Time Series Forecasting. ICLR 2024 - Xinle Wu, Dalin Zhang, Miao Zhang, Chenjuan Guo, Bin Yang, Christian S. Jensen: AutoCTS+: Joint Neural Architecture and Hyperparameter Search for Correlated Time Series Forecasting. Proc. ACM Manag. Data 1(1): 97:1-97:26 (2023) CCF-A - David Campos, Miao Zhang, Bin Yang, Tung Kieu, Chenjuan Guo, Christian S. Jensen: LightTS: Lightweight Time Series Classification with Adaptive Ensemble Distillation. Proc. ACM Manag. Data 1(2): 171:1-171:27 (2023) CCF-A - Zhicheng Pan, Yihang Wang, Yingying Zhang, Sean Bin Yang, Yunyao Cheng, Peng Chen, Chenjuan Guo, Qingsong Wen, Xiduo Tian, Yunliang Dou, Zhiqiang Zhou, Chengcheng Yang, Aoying Zhou, Bin Yang: MagicScaler: Uncertainty-aware, Predictive Autoscaling. Proc. VLDB Endow. 16(12): 3808-3821 (2023) CCF-A - Haomin Yu, Jilin Hu, Xinyuan Zhou, Chenjuan Guo, Bin Yang, Qingyong Li: CGF: A Category Guidance Based PM2.5 Sequence Forecasting Training Framework. IEEE Trans. Knowl. Data Eng. 35(10): 10125-10139 (2023) CCF-A - Sean Bin Yang, Chenjuan Guo, Bin Yang: Context-Aware Path Ranking in Road Networks. IEEE Trans. Knowl. Data Eng. 34(7): 3153-3168 (2022) CCF-A - Tung Kieu, Bin Yang, Chenjuan Guo, Razvan-Gabriel Cirstea, Yan Zhao, Yale Song, Christian S. Jensen: Anomaly Detection in Time Series with Robust Variational Quasi-Recurrent Autoencoders. ICDE 2022: 1342-1354 CCF-A - Sean Bin Yang, Chenjuan Guo, Jilin Hu, Bin Yang, Jian Tang, Christian S. Jensen: Weakly-supervised Temporal Path Representation Learning with Contrastive Curriculum Learning. ICDE 2022: 2873-2885 CCF-A - Razvan-Gabriel Cirstea, Bin Yang, Chenjuan Guo, Tung Kieu, Shirui Pan: Towards Spatio- Temporal Aware Traffic Time Series Forecasting. ICDE 2022: 2900-2913 CCF-A - Tung Kieu, Bin Yang, Chenjuan Guo, Christian S. Jensen, Yan Zhao, Feiteng Huang, Kai Zheng: Robust and Explainable Autoencoders for Unsupervised Time Series Outlier Detection. ICDE 2022: 3038-3050 CCF-A - Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, Shirui Pan: Triformer: Triangular, Variable-Specific Attentions for Long Sequence Multivariate Time Series Forecasting. IJCAI 2022: 1994-2001 CCF-A - Yan Zhao, Xuanhao Chen, Liwei Deng, Tung Kieu, Chenjuan Guo, Bin Yang, Kai Zheng, Christian S. Jensen: Outlier Detection for Streaming Task Assignment in Crowdsourcing. WWW 2022: 1933-1943 CCF-A - David Campos, Tung Kieu, Chenjuan Guo, Feiteng Huang, Kai Zheng, Bin Yang, and Christian S. Jensen. Unsupervised Time Series Outlier Detection with Diversity-Driven Convolutional Ensembles. Proc. VLDB Endow. 15(3): 611-623 (2021) CCF-A - Xinle Wu, Dalin Zhang, Chenjuan Guo, Chaoyang He, Bin Yang, Christian S. Jensen: AutoCTS: Automated Correlated Time Series Forecasting. Proc. VLDB Endow. 15(4): 971-983 (2021) CCF-A - Razvan-Gabriel Cirstea, Tung Kieu, Chenjuan Guo, Bin Yang, Sinno Jialin Pan: EnhanceNet: Plugin Neural Networks for Enhancing Correlated Time Series Forecasting. ICDE 2021: 1739-1750. CCF-A - Sean Bin Yang, Chenjuan Guo, Jilin Hu, Jian Tang, Bin Yang: Unsupervised Path Representation Learning with Curriculum Negative Sampling. IJCAI 2021: 3286-3292. CCF-A - Chenjuan Guo, Bin Yang, Jilin Hu, Christian S. Jensen, and Lu Chen: Context-Aware, Preference-Based Vehicle Routing. VLDB J. 29(5): 1149-1170 (2020). CCF-A - Jilin Hu, Bin Yang, Chenjuan Guo, Christian S. Jensen, and Hui Xiong: Stochastic Origin-Destination Matrix Forecasting Using Dual-Stage Graph Convolutional, Recurrent Neural Networks, ICDE 2020:1417-1428. CCF-A
|